ESTUDIO DE LA INFLUENCIA DEL TRATAMIENTO TERMICO, QUIMICO Y RADIACIONAL EN LA SORCION DE CESIO Y COBALTO EN ZEOLITAS NATURALES

J. Domínguez, A. Pérez, I. Preval, I. Quiñones y E. Rubio Centro de Estudios Aplicados al Desarrollo Nuclear La Habana, Cuba

Resumen

Se estudia la influencia del tratamiento térmico y radiacional de las zeolitas de los yacimientos El Piojillo (Villa Clara), Orozco (Pinar del Río) y Palmarito (Santiago de Cuba) en la sorción de cesio-137. Se comprobó que, como ocurre generalmente en las zeolitas, el tratamiento térmico influye negativamente en la sorción y que el radiacional con dosis de hasta 10⁶ Gy no la afecta.

Se aplican, además, variantes de tratamientos químicos y químico-térmicos a la zeolita de El Piojillo. Se observó que el tratamiento previo con NH4OH a 200[°]C en la estufa de vacío y la puesta en contacto en régimen dinámico con NaNO3 mejora su capacidad de sorción para el cobalto.

STUDY ON THE INFLUENCE OF RADIATION, CHEMICAL AND TERMIC TREATMENT IN CESIUM AND COBALT ABSORPTION OF NATURAL ZEOLITES

Abstract

The influence of radiation and termic treatment of zeolites from El Piojillo (Villa Clara), Orozco (Pinar del Río) and Palmårito (Santiago de Cuba) deposits in the absorption of cesium-137 is studied. It was verified that as it generally occurs in zeolites, the termic treatment influences negatively the absorption and the radiation treatment with dose up to 10⁵ Gy does not affect it.

Alternatives to chemical and chemical-termic treatment for zeolite from El Piojillo are also applied. It was noted that previous treatment with NH4OH at 200°C in the vacuum stove and its contact in dinamic regime with NaNO3 improves its capacity of cobalt absorption

INTRODUCCION

Las zeolitas son mundialmente utilizadas como sorbentes para la descontaminación de desechos radiactivos de baja actividad.

Estudios realizados con anterioridad [1] evidenciaron las posibilidades de utilizar rocas zeolíticas cubanas de los yacimientos El Piojillo, Orozco y Palmarito para la descontaminación de este tipo de desechos.

Se ha comprobado [2,3] que el enriquecimiento de la zeolita en Na⁺ favorece la sorción de determinados iones. En este trabajo se evalúa la influencia de distintos tratamientos aplicados a la zeolita del yacimiento El Piojillo en la sorción de Cs⁺ y Co²⁺, con el fin de enriquecerla en Na⁺ y la influencia de tratamientos térmicos y radiacionales de las rocas zeolíticas de los tres yacimientos en la sorción de Cs⁺.

MATERIALES Y METODOS

En los estudios realizados se emplearon rocas zeolíticas de tres yacimientos: El Piojillo (Villa Clara), con un 90% de zeolita en la roca; Palmarito (Santiago de Cuba), constituida en un 80%-90% de la masa total por mordenita y Orozco (Pinar del Río), formada por un 80% de zeolita de la familia clinoptilolita-heutandita.

En la tabla 1 se ilustra la composición química de muestras de los yacimientos estudiados, obtenida por espectrofotometría de absorción atómica (EAA) con un error del 5% para la determinación de Si y un 3% para el resto.

	Tabla 1
Compos	sición química en % de muestras de los
6.8.9.4. Y 1	vacimientos estudiados

	Piojillo	Palmarito	Orozco
S102	64,17	65,78	58,87
T10 ₂	0,36	0,27	0,39
A1 0	10,89	10,81	11,87
Fe ₂ 0 ₃	2,47	1,71	2,66
CaO	4,04	3,86	5,14
MgO	1,23	0,96	2, 18
Na ₂ 0	1,28	2,02	1,10
K_0	0,90	0,79	0,99
PPI*	14,77	13,97	17, 12
S1/A1	5,19	5,38	4,37

* pérdidas por incineración

Los experimentos se llevaron a cabo utilizando el método de los indicadores radiactivos. El tratamiento térmico se realizó sometiendo a calentamiento muestras de los sorbentes duante 2, 4 y 6 horas a las temperaturas de 200°C, 300°C 400°C, 500°C y 600°C; y el radiacional, sometiéndolas a dosis de 2 x 10³ Gy y 2 x 10⁵ Gy en una fuente de irradiación de cobalto-60 MRX-25 de fabricación soviética, con una potencia de dosis de 27 rad/seg y a una temperatura de 25°C \pm 1°C.

Una vez tratadas, se determinaron los coeficientes de distribución (Kd) del Cs⁺ en dichas muestras a temperatura ambiente. Los resultados se reflejan en las tablas 2-5.

Con el objetivo de enriquecer la zeolita en Na+:

a) Una muestra de zeolita se mantuvo durante 15 minutos a reflujo con HCl 1N, fue lavada, secada a 200°C al vacío y puesta en contacto en régimen dinámico con NaNO₃ 0,5N. El tratamiento previo con HCl se aplica con el objetivo de eliminar las oclusiones de Al₂O₃, Fe₂O₃ y otras impurezas en los canales zeolíticos y favorecer el proceso de intercambio [4].

b) Una muestra de zeolita se puso en contacto en régimen dinámico con NH₄OH, lavada y secada a 200°C al vacío, lo que provoca la descomposición del ion amonio según:

NH4 ⁺		TOC	-	NH ₃	+	Η+
	willV)	olejol 9	(i) :a	oineirr	100	1 805

Posteriormente fue tratada con NaNO₃ 0,5N.

Se determinaron la capacidad de sorción dinámica y el coeficiente de distribución del Cs⁺ y el Co²⁺ en los sorbentes tratados. Los resultados de este estudio se muestran en la tabla 6.

Las mediciones radiométricas se realizaron con la ayuda de un detector de centelleo de Nal(TI) acoplado a un radiómetro. Todas las mediciones se efectuaron con un error relativo inferior al 5%. Los valores reportados se dan para un 95% de confiabilidad.

La identificación de las fases zeolíticas que componen estos yacimientos se llevaron a cabo mediante difracción de rayos X en un difractómetro DRON-3, con radiación K α filtrada de Fe y Co.

Esta técnica se utilizó, además, para observar el comportamiento estructural de las zeolitas estudiadas ante tratamientos térmicos y radiacionales.

RESULTADOS Y DISCUSION

Es conocido de la literatura que el tratamiento térmico de la zeolita a más de 100°C afecta sus propiedades sortivas y que la sorción disminuye a medida que la temperatura de tratamiento aumenta [5].

Los resultados obtenidos en los yacimientos estudiados corroboran este comportamiento. La zeolita de Orozco tratada a 200°C durante 2 horas conserva aproximadamente el 50% de la sorción inicial por su parte, la de Palmarito conserva el 70% y la de El Piojillo el 60%. Como vemos en las tablas 2-4, al aumentar la temperatura de tratamiento a 600°C el Kd del Cs⁺ en la zeolita de Orozco se reduce al 2%, y en la de El Piojillo y Palmarito al 10%.

Tabla 2 Valores del coeficiente de distribución (Kd) del ¹³⁷Cs en muestras de Orozco tratadas térmicamente

T(°C) \ T(h)	0	2	4	6
0	414+/-9			
200		202+/-4	205+/-5	200+/-4
300		172+/-3	107+/-2	83+/-3
400		54+/-2	27+/-1	23+/-1
500		13,8+/-0,9	13,9+/-0,9	12,9+/-0,9
600		8,6+/-0,9	7,8+/-0,8	8,3+/-0,8

Tabla 3

Valores del coeficiente de distribución (Kd) del ¹³⁷Cs en muestras de Palmarito tratadas térmicamente

	State State State		A STATE OF THE STATE OF	1
T(°C) T(h)	0	2	4	6
0	865+/~20			
200		618+/-14	633+-/13	607+/-23
300		394+/-9	336+/-7	296+/-6
400		160+/-3	140+/-3	136+/-3
500		100+/-2	99+/-2	100+/-2
600		96+/-2	96+/-2	99+/-2
		and the second second second		

Tabla 4 Valores del coeficiente de distribución (Kd) del ¹³⁷Cs en muestras de El Piojillo tratadas térmicamente

\T(h)				
т(°с) \	0	2	4	6
0	896+/-22	a la compañía	en se states	gase (1s.)
200		549+/-15	575+/-14	574+/-11
300		532+/-19	541+/-18	558+/-13
400		502+/-11	291+/-6	302+/-7
500		184+/-4	186+/-4	185+/-6
600		106+/-2	107+/-2	103+/-2

Los resultados reflejan que solo las muestras de Orozco tratadas a 300°C y 400°C y las de Palmarito a 300°C no logran alcanzar la estabilidad de sus propiedades sortivas en el intervalo de tiempo estudiado.

La estabilidad térmica de la estructura zeolítica depende de la composición química de las muestras [6] y de la relación Si/Al [7], lo que condiciona las diferencias en el comportamiento de la zeolita de distintos yacimientos. La estructura zeolítica es térmicamente más estable mientras mayor sea la relación Si/Al y menor sea el potencial iónico de los cationes intercambiables que posea [8].

Los cationes con potencial iónico relativamente grande como el Ca²⁺ migran, para satisfacer la esfera de coordinación antes ocupada por el agua, hacia las cercanías de los oxígenos tetraédricos e interactúan con el esqueleto zeolítico deformándolo. La interacción de cationes como el Na⁺ y el K⁺ de potencial iónico mucho menor es menos enérgica y deformante. Los resultados experimentales expuestos en las tablas 2-4 corroboran el análisis anterior.

En el análisis por difracción de rayos X realizado a muestras de los tres yacimientos, sometidas durante 4 horas a temperaturas de 400°C y 600°C (figuras 1-3), se observa que en las correspondientes al yacimiento El Piojillo (figura 1), compuestas fundamentalmente por clinoptilolita y mordenita, la intensidad de las reflexiones de la clinoptilolita disminuye a partir de 400°C, empeorando su cristalinidad y a los 600°C solo se aprecian las reflexiones de la fase mordenita.

Lo anterior se corresponde con los difractogramas de la zeolita de Palmarito, compuesta fundamentalmente por mordenita, donde no ocurren cambios significativos luego de someterla a 600°C (figura 3).

El comportamiento de las muestras del yacimiento de Orozco (figura 2) es similar al de la fase clinoptilolítica de El Plojillo: a los 400°C la intensidad de las reflexiones disminuye y a los 600°C, se amorfiza.

El análisis por difracción de rayos X realizado evidencia que la disminución de las propiedades sortivas de las muestras estudiadas a causa del tratamiento térmico no está únicamente relacionada con la pérdida de la cristalinidad.

Como resultado del tratamiento térmico aplicado a las muestras estudiadas, tal como ha sido reportado [9,10], es posible que tengan lugar procesos de intercambio iónico intracristalino que provoquen bloqueo de los canales o posicionamiento de los cationes en lugares menos favorables para el intercambio.

Se conoce, además, que durante el proceso de deshidratación el Al³⁺ tetraédrico es desplazado hacia

Figura 1. Análisis por DRX de la zeolita de El Piojillo (A: temperatura ambiente, B: tratada a 400°C y C: tratada a 600° C.

Figura 2. Análisis por DRX de la zeolita de Orozco (A: temperatura ambiente, B: tratada a 400°C y C: tratada a 600° C.

Figura 3. Análisis por DRX de la zeolita de Palmarito (A: temperatura ambiente, B: tratada a 600° C.

los canales [11], lo que puede dificultar el acceso a ellos y por tanto al intercambio.

Análisis por RMN de alta resolución en sólidos realizados a la zeolita de Palmarito tratada a 450°C y 800°C⁺ [12] atestiguan la pérdida del aluminio estructural, que provoca la disminución de la capacidad total de intercambio al disminuir el déficit de carga positiva en el esqueleto zeolítico [13].

TRATAMIENTO RADIACIONAL

Los valores del Kd reflejados en la tabla 5 muestran que las propiedades sortivas de las zeolitas de Orozco, El Piojillo y Palmarito frente al Cs⁺ no sufren variaciones significativas, después de ser sometidas a radiaciones de 2×10^3 Gy y 2×10^5 Gy.

Tabla 5

Valores del coeficiente de distribución (Kd) del ¹³⁷Cs en muestras de los yacimientos estudiados luego del tratamiento radiacional

Dosis(Gy) Nuestra	0	2x10 ³	2x10 ⁸
Piojillo natural	574+/-14	553+/-14	5614/-14
Orozco natural	280+/-8	289+/-7	294+/-6
Palmarito natural	538+/-13	510+/-12	522+/-14

Los diagramas de difracción de rayos X del yacimiento El Piojillo (figura 4), sometidos a las dosis radiacionales planteadas, se mantienen invariables, lo que muestra que la estructura es resistente a dicho tratamiento.

Este comportamiento es, en general, el reportado para las zeolitas [8,14] y es una de las ventajas que posee frente a las resinas sintéticas, las cuales bajo los efectos de las radiaciones ionizantes del orden de las estudiadas [15] sufren rotura de los enlaces entre los cationes y los grupos funcionales, asimismo del esqueleto, disminuyendo sensiblemente su capacidad de intercambio.

TRATAMIENTO QUIMICO-TERMICO

Los resultados reflejados en la tabla 6 muestran que el tratamiento químico-térmico de la zeolita del yacimiento El Piojillo no influye por igual en la sorción de Cs⁺ y Co²⁺

 a) Zeolita tratada con NH4OH 1N, en condiciones dinámicas, calentada a 200°C y tratada posteriormente con solución de NaNO₃ 0,5N.

b) Zeolita tratada con HCl 1N a reflujo, secada a 200°C y tratada posteriormente con NaNO₃ 0,5N.

Existen opiniones contradictorias acerca de la concentración de HCI a partir de la cual el intercambio iónico da paso a la dealuminación de la zeolita, algunos autores lo sitúan en 2N [16], otros reportan que a conTabla 6 Capacidad de sorción dinámica y coeficiente de distribución en muestras sometidas a tratamiento químico-térmico frente a cesio-137 y cobalto-60

Elemento estudiado	Muestra de zeolita	Coeficiente de distribución (ml/g)	Cap. de sorc dinámica (meq-g/g)
Cs-137	Piojillo natural	10,62+/-0,24	1,71+/-0,02
	Z-Na [*] (a)	10,50+/-0,26	1,59+/-0,03
	Z-Na ⁺ (b)	5,92+/-0,22	1,07+/-0,03
	Piojillo natural	2,28+/-0,23	0,23+/-0,02
Co-60	Z-Na [*] (a)	7,73+/-0,25	1,12+/-0,03
	Z-Na [*] (b)	2,99+/-0,20	0,5+/-0,02

Figura 4. Análisis por DRX de la zeolita de El Piojillo (A: sin tratamiento, B: sometida a dosis 10⁷ rad).

centraciones 0,1N [17] ya se observa este fenómeno, que trae como consecuencia la disminución de los centros de sorción y por tanto de la magnitud de esta.

Los resultados obtenidos (tabla 6) reflejan que tanto la capacidad de sorción como el Kd del Cs⁺ en las muestras tratadas a reflujo con HCl 1N son menores con relación a la no tratada, lo que se debe probablemente a la dealuminación del sorbente.

En lo que al Co²⁺ se refiere los valores del Kd y la capacidad de sorción muestran que el posible enriquecimiento de la zeolita en Na⁺, ion fácilmente intercambiable gracias a su gran movilidad y relativamente pequeño potencial iónico [17], es predominante y favorece la sorción.

Los resultados del Kd y la capacidad de sorción dinámica, según el procedimiento a), reflejan que dicho tratamiento no mejora los parámetros sortivos de la zeolita natural para el Cs⁺, sin embargo, es notable el aumento de estos para el Co²⁺

Este tratamiento no provoca la dealuminación del sorbente [18] y producto de la gran afinidad del NH4⁺ por la matriz [19] se logra probablemente un mayor enriquecimiento de esta en Na⁺ que por el procedimiento b), lo que favorece la sorción de Co²⁺

CONCLUSIONES

1. Se comprobó que para el tratamiento térmico aplicado a las zeolitas de El Piojillo, Palmarito y Orozco el aumento de la temperatura influye negativamente en la sorción del cesio-137.

2. La pérdida de la estructura cristalina de la zeolita no constituye la única causa de la disminución de las propiedades sortivas de los sorbentes estudiados.

3. Tanto las propiedades sortivas como la estructura cristalina de los materiales estudiados no se afectan a causa de dosis radiacionales del orden de 10⁵ Gy.

4. El tratamiento químico-térmico aplicado a la zeolita de El Piojillo a base de solución de NH4OH 1N y 200°C de temperatura mejora 4 veces la capacidad de sorción dinámica de este sorbente con relación al Co^{2+.}

BIBLIOGRAFIA

[1] CHALES, G., NOVOA, J. y otros, Caracterización de la zeolita de El Piojillo para su empleo en la gestión de desechos radiactivos. Nucleus 3 (1987) 26.

 [2] GRADEV, G. D., Avtoreferat dissertatsii na soiskanie uchenoj stepeni kandidata khimicheskikh nauk, Moscú 02.00.14 (1978).
[3] STEFANOV, G. I., GRADEV, G. D. y otros, Vozmozhnosti za ispolzovanie na neorganichni sorbenti za gezaktivipane na radioaktivni otpadchni bodi v AETS Fizika i Energia, Sofia (1980). [4] FRILLETTE, V. J., RUBIN, M. K., Catal J. V-4 (1965) 310-311.

[5] GRADEV, G., y MILANOV, M. V., Estudio de las propiedades de sorción de la clinoptilolita vermiculita bentónica con el objetivo de su empleo para la descontaminación de aguas residuales. Nuclear Energy 7, (1978) 30.

[6] CHELISHCHEV, N. F., BERENSHTEJN, B. G. y otros, Tseolity novii Tip mineranlogo sypisya, Moskva, Nieda (1987) 45.

[7] Zeolites, Synthesis, Estructure, Technology and Application. Symposium, Yugoslavia (1985).

[8] BERENSHTEJN, B. G., Metody issledovaniy v oblasti tekhologu rekometalnogo sypya u okhrany okruzhayushchej sregy M. (1982) 25-31.

[9] BARRER, R. M. y LANGLEY, D. M., J. Chem 50c (1958) 3804-3817.

[10] MORTIER, W. J. y PLUTH, J.J., I. Mat. Res. Bull. 10 (1975) 1037-1046, 1319-1326; 11, (1975) 15-22.

[11] Progress in NMR Spectroscopy. 16 (1984) 280.

[12] DIAZ, D. y MAGI, M., Estudio de zeolitas naturales cubanas por RMN de alta resolución en sólidos. (Pendiente de publicación.)

[13] Proceedings of the 7th International Zeolite Conference Tokyo, (1986) 280.

[14] TSITSISHVILI, G. V., ANDRONIKASHVILI, T. G. y otros, Prirodnye Tseolity Moscú, Khimia (1985) 159.

[15] T.R.S. No. 78 STI/DOC/10/78, Vienna, OIEA.

[16] MUMINOV, S. Z., y otros, Spavnitelnoe izuchenie kislotnovot modifitsirovaniya klinoptilolita, Tashkent (1973), VINITI 1976, No. 1590-76.

[17] CHELISHCHEV, N. F., BERENSHTJEN, B. G. y otros, Tseolitynovyj Tip mineralnogo Syrya. Moskva. Negra (1987) 134-135.

[18] TSTSISHVILI, G. V., ANDRONIKASHVILI, T. G. y otros, Pripodnye Tseolity. Moskva. Khimiya (1985) 113.

[19] BARNABISHVILI, D. N., y otros, Klinoptilotit, Tbilisi, Metsniereba (1977) 148-154.